Theoretical studies of homogeneous catalysts mimicking nitrogenase.

نویسندگان

  • Jacopo Sgrignani
  • Duvan Franco
  • Alessandra Magistrato
چکیده

The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of N2 by supported tungsten clusters gives a model of the process by nitrogenase

Metalloenzymes catalyze difficult chemical reactions under mild conditions. Mimicking their functions is a challenging task and it has been investigated using homogeneous systems containing metal complexes. The nitrogenase that converts N(2) to NH(3) under mild conditions is one of such enzymes. Efforts to realize the biological function have continued for more than four decades, which has resu...

متن کامل

The Chemical Evolution of a Nitrogenase Model, XXII. Reduction of Acetylene with Catalysts Derived from Molybdate, Homocitric Acid and N-Methylimidazole and a Proposal Concerning the Active Site of Functional Azotobacter Nitrogenases

Previous studies indicated [1,2] that the reduc­ tions of substrates of bacterial nitrogenases are characteristic of reactions at a mononuclear mo­ lybdenum (Mo-) site and that iron-sulfur cluster complexes act as efficient catalysts of electron transfer without otherwise chemically participat­ ing in the binding and the reduction of the sub­ strates. The studies furthermore suggested that Mo i...

متن کامل

Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia.

A nitrogenase-inspired biomimetic chalcogel system comprising double-cubane [Mo2Fe6S8(SPh)3] and single-cubane (Fe4S4) biomimetic clusters demonstrates photocatalytic N2 fixation and conversion to NH3 in ambient temperature and pressure conditions. Replacing the Fe4S4 clusters in this system with other inert ions such as Sb(3+), Sn(4+), Zn(2+) also gave chalcogels that were photocatalytically a...

متن کامل

The effect of iodo substituents in bis(phenoxyimine) zirconium complexes on the catalytic performance of homogeneous ethylene polymerization reactions

Eight different zirconium phenoxyimine complexes were synthesized, characterized and tested as catalysts for ethylene polymerization. The phenoxyimine compounds were prepared by condensation of substituted salicylaldehydes with aliphatic and aromatic amines, the substituted salicylaldehydes from ortho substituted phenols and paraformaldehyde. The introduction of iodo substituents was achieved e...

متن کامل

Fischer-Tropsch chemistry at room temperature?

The unique catalytic activity of vanadium nitrogenase suggests a new direction for the direct production of biofuels from CO with either synthetic catalysts or nitrogenase-containing bacteria. The reduction of CO by V nitrogenase to light hydrocarbons shows striking similarities to the established Fischer-Tropsch process; however, the enzyme does not use H(2) directly for this reaction. ADP=ade...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2011